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Exercice 1 – Cadre avec ferme sous-tendue 
Donnée 

Le système statique ci-après est un exemple typique de cadre en acier avec ferme sous-tendue par un tirant. Le tirant 
est généralement constitué d’un câble en acier ne reprenant donc que des efforts en traction. 

Le système statique principal est alors défini ci-après. 

 

 

 

Questions 

1) Démontrer que ce système est isostatique. Que se passe-t-il si l’on supprime le tirant? 
 

2) Une charge de neige répartie de 2 kN/m’ est appliquée sur la toiture comme suit : 
 

 

a. Calculer les réactions d’appuis. 
b. Calculer les efforts dans chaque élément de la structure (M,V et N) et dessiner les diagrammes 

correspondants. 
c. Quelles remarques peut-on faire sur ce type de système avec tirant ? 

3) Lors d’un évènement on décide d’accrocher de puissants spots lumineux de 100 kg au milieu du tirant. La 
flèche mesurée est alors de 5 cm. Pour cet exemple le système statique est légèrement modifié ; le cadre est 
simplement appuyé sur ses deux côtés, ce qui est plus représentatif de la réalité. 
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a. Montrer que le système est hyperstatique. Quel est le degré d’hyperstaticité ? 
b. Calculer les efforts dans le tirant. 
c. Pourquoi sommes-nous obligés ici de considérer deux appuis fixes ? 
d. Peut-on tout de même calculer les efforts dans la structure ? Si oui expliquer pourquoi et effectuer le 

calcul. 
e. Que se passe-t-il si la déformation tend à être nulle au point d’application de la charge ? 
f. Quelles conclusions peut-on tirer de ces résultats ? 

 

Exemples concrets 

La photo ci-dessous montre un exemple classique de ferme sous-tendue. 

 

La photo suivante montre l’exemple d’une ferme dont le tirant n’est pas un câble mais un profilé métallique (ici une 
double cornière). On observe aussi un montant entre le sommet de la ferme et le milieu du tirant. Nous pouvons citer 
plusieurs raisons liées aux choix de ce montant et de profilés laminés plutôt qu’un câble qui sont : la flèche naturelle 
limitée sur la longueur, la possibilité de suspendre ou fixer des éléments à ce tirant de manière plus aisée, limiter les 
efforts horizontaux dus à des charges appliquées sur le tirant(le tirant agit alors comme une poutre, voir problèmes 
liés aux câbles tendus dans question 3), limiter les flèches dues à ces mêmes charges,… 
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Corrigé Exercice 1 – Cadre avec ferme sous-tendue 
Questions 

1) Démontrer que ce système est isostatique. Que se passe-t-il si l’on supprime le tirant ? 
a. Nombre d’éléments : 3 

Nombre d’équations d’équilibre par élément (dans un plan) : 3 
è Nombre d’équations d’équilibre N = 3 x 3 = 9 

b. Nombre de réaction d’appuis : 3 
Nombre de réactions aux nœuds : 6 
è Nombre d’inconnues statiques U = 3 + 6 = 9 

Système à N équations pour U inconnues à U – N = 9 – 9 = 0 à système isostatique 

 
Si l’on supprime le tirant nous avons : 

a. Nombre d’éléments : 2 
Nombre d’équations d’équilibre par élément (dans un plan) : 3 
è Nombre d’équations d’équilibre N = 2 x 3 = 6 

b. Nombre de réaction d’appuis : 3 
Nombre de réactions aux nœuds : 2 
è Nombre d’inconnues statiques U = 3 + 2 = 5 

Système à N équations pour U inconnues à U – N = 5 – 6 = -1 à mécanisme ! La structure est instable. 

 

2) Une charge de neige répartie de 2 kN/m’ est appliquée sur la toiture comme suit : 

 

a. Calculer les réactions d’appuis 
La répartition de la charge étant symétrique et parallèle à l’axe vertical nous pouvons dire : 

𝑅"# = 𝑅%# = 𝑞'()*( ∗
𝐿
2
= 2 ∗

17
2
= 17	𝑘𝑁 
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𝑅"3 = 𝑅%3 = 0 
 

b. Calculer les efforts dans chaque élément de la structure (M,V et N) et dessiner les diagrammes 
correspondants. 
Il est dans un premier temps nécessaire de rabattre la charge sur les pans de la ferme. 

 
L’angle entre la poutre principale de la ferme et le tirant est égal à, 

𝛼 = 6𝑎𝑟𝑐𝑡𝑔 <
2.5
17

2?
@A 

 
La charge de neige rabattue est alors égale à, 

𝑞'()*(,C = 2
𝑘𝑁
𝑚E ∗ cos(𝛼) = 1.92

𝑘𝑁
𝑚E  

 

On découpe ensuite la structure en deux parties et on pose nos équations d’équilibre. De plus nous savons 
que le tirant ne peut reprendre qu’un effort de traction ce qui réduit le nombre d’inconnues. 

 

Partie de droite : 

L𝐹3 = 0 = 𝐹3,NOP + 𝐹3,)'R 

L𝐹# = 0 = 𝐹#,NOP + 𝑅%,# − 𝑞'()*( ∗
17
2	

 

→ 𝐹#,NOP = −𝑅%,# + 𝑞'()*( ∗
17
2
= −17 + 2 ∗

17
2
= 0	𝑘𝑁 

Nous voyons alors aisément que la composante verticale 𝐹#,NOP est nulle. 
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L𝑀NVWW(X = 0 = 𝑅%# ∗
17
2
− 𝑞'()*( ∗

Y17 2? Z
[

2
+ 𝐹3.)'R ∗ 2.5 

→ 𝐹3.)'R =

6−𝑅%# ∗
17
2 + 𝑞'()*( ∗

Y17 2? Z
[

2 A

2.5
=

6−17 ∗ 172 + 2 ∗
Y17 2? Z

[

2 A

2.5
= −28.9	𝑘𝑁 

→ 𝐹3.NOP = −𝐹3.)'R = 28.9	𝑘𝑁 

 

 

 

 

EFFORTS DANS LE TIRANT 
Nous pouvons déjà en conclure que, aucune charge étant appliquée sur le câble, l’effort de traction sera 
constant sur toute la longueur et donc, 

𝑁 = 28.9	𝑘𝑁 

Nous avons alors le système suivant : 

 

Afin de déterminer les efforts dans la poutre principale nous devons décomposer les forces 
perpendiculairement et parallèlement au système d’axes local de la poutre. Nous avons donc : 

 

𝑞'()*(,C,P(]P = 1.92
𝑘𝑁
𝑚E ∗ cos(𝛼) = 1.84

𝑘𝑁
𝑚E  
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𝑞'()*(,C,P_]_ = 1.92
𝑘𝑁
𝑚E ∗ sin(𝛼) = 0.541

𝑘𝑁
𝑚E  

Et le système coupé : 

 

EFFORTS DANS LA POUTRE PRINCIPALE 
L’effort normal au sommet est alors égale à la composante parallèle à l’élément de 𝐹3.NOP, soit, 

𝑁 = −𝐹3.NOP ∗ cos(𝛼) = −27.7	𝑘𝑁 

L’effort tranchant au sommet est alors égale à la composante perpendiculaire à l’élément de 𝐹3.NOP, soit, 

𝑉 = 𝐹3.NOP ∗ sin(𝛼) = 8.15	𝑘𝑁 

Le moment au sommet est nul car il y a une rotule. 

 

 

À mi travée, l’effort normal est égal à, 

𝑁 = −𝐹3.NOP ∗ cos(𝛼) − 𝑞'()*(,C,P_]_ ∗
17

2?
(cos(𝛼))

∗
1
2
= −30.1	𝑘𝑁 

À mi travée l’effort tranchant est égal à, 

𝑉 = 𝐹3.NOP ∗ sin(𝛼) − 𝑞'()*(,C,P(]P ∗
17

2?
(cos(𝛼))

∗
1
2
= 0	𝑘𝑁 

À mi travée le moment est égal à, 

𝑀 = −𝐹3.NOP ∗ sin(𝛼) ∗
17

2?
(cos(𝛼))

∗
1
2
+ 𝑞'()*(,C,P(]P ∗

17
2?

(cos(𝛼))
∗
1
2
∗
1
2
= −18.1	𝑘𝑁𝑚 

 

 

À l’angle, l’effort normal est égal à, 

𝑁 = −𝐹3.NOP ∗ cos(𝛼) − 𝑞'()*(,C,P_]_ ∗
17

2?
(cos(𝛼))

= −32.5	𝑘𝑁 
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À l’angle l’effort tranchant est égal à, 

𝑉 = 𝐹3.NOP ∗ sin(𝛼) − 𝑞'()*(,C,P(]P ∗
17

2?
(cos(𝛼))

= −8.15	𝑘𝑁 

À l’angle le moment est égal à, 

𝑀 = −𝐹3.NOP ∗ sin(𝛼) ∗
17

2?
(cos(𝛼))

+ 𝑞'()*(,C,P(]P ∗
17

2?
(cos(𝛼))

∗
1
2
= 0	𝑘𝑁𝑚 

 

 

 

DIAGRAMME DES MOMENTS 

 

 

DIAGRAMME DES EFFORTS TRANCHANTS 
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DIAGRAMME DES EFFORTS NORMAUX 

 

 

 

c. Quelles remarques peut-on faire sur ce type de système avec tirant ? 
La force dans le tirant est relativement grande en comparaison des autres efforts dans la structure. 
Ce type de système devient avantageux lorsque l’on veut soulager les appuis de la structure en évitant 
ainsi de leur introduire une charge horizontale importante (le système isostatique est alors un cadre 
sur deux appuis fixes sans tirant, voir question 3). Pour donner un exemple, les murs en maçonnerie 
sont généralement très peu résistants dans leur axe transversal et ils ne peuvent généralement pas 
reprendre les efforts horizontaux engendrés par un système similaire sans tirant, c’est pourquoi dans 
le cas d’un bâtiment en briques avec un toit à deux pans il peut être préférable d’introduire un tirant 
tel que dans le système présenté. 
 

3) Lors d’un évènement on décide d’accrocher de puissants spots lumineux de 100 kg au milieu du tirant. La 
flèche mesurée est alors de 5 cm. Pour cet exemple le système statique est légèrement modifié ; le cadre est 
simplement appuyé sur ses deux côtés, ce qui est plus représentatif de la réalité. 

a. Montrer que le système est hyperstatique. Quel est le degré d’hyperstaticité ? 
Nombre d’éléments : 3 
Nombre d’équations d’équilibre par élément (dans un plan) : 3 
è Nombre d’équations d’équilibre N = 3 x 3 = 9 
Nombre de réaction d’appuis : 4 
Nombre de réactions aux nœuds : 6 
è Nombre d’inconnues statiques U = 3 + 6 = 10 
Système à N équations pour U inconnues à U – N = 10 – 9 = 1 à système hyperstatique de degré 1 
 

b. Calculer les efforts dans le tirant. 
Pour calculer l’effort dans le tirant on isole le nœud ou s’applique la charge. Nous obtenons le système 
suivant, 

 
Nous savons que, 
 1	𝑘𝑔 = 10	𝑁 
 
Donc, 
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𝑄NPVXN = 100	𝑘𝑔 = 1	𝑘𝑁 
 
De plus, l’angle entre le câble et l’axe horizontal est défini comme suit, 

𝛽 = <𝑎𝑟𝑐𝑡𝑔 f
0.05
17 2⁄ h@ = 0.337° 

 
La charge 𝑄NPVXN est reprise par les composantes verticales des forces de traction dans le câble. Le 
système étant symétrique nous pouvon en déduire que la force de traction à droite est égale à la force 
de traction à gauche dans le câble. Ainsi si 𝑇 est la force de traction dans le câble, 𝑇3 sa composante 
horizontale et 𝑇# sa composante verticale, nous avons alors pour ce système, 

L𝐹# = 0 = −2 ∗ 𝑇# + 𝑄NPVXN 

→ 𝑇# =
𝑄NPVXN
2

=
1
2
= 0.5	𝑘𝑁 

𝑇 et 𝑇3 sont alors facilement calculés, 

𝑇 =
𝑇#
sin 𝛽

= 85	𝑘𝑁 

𝑇3 = 𝑇 ∗ cos 𝛽 = 85	𝑘𝑁 

c. Pourquoi sommes-nous obligés ici de considérer deux appuis fixes ? 
Le cas présenté dans cet exemple est un cas particulier de la statique. En effet les barres considérées 
dans la plupart des cas ont un comportement dit « linéaire ». Celles-ci peuvent en effet être soumises 
à des efforts en traction identiques aux efforts de compression ainsi qu’à des moments. Cependant 
les câbles sont des cas particuliers puisqu’ils ne peuvent pas reprendre d’efforts de compression ni de 
moments (ou alors négligeables). Il est dit qu’ils ont un comportement « non-linéaire ». Ainsi tant que 
les charges qui sont appliquées sur le cadre créent un effort de traction dans le câble, le calcul est 
« linéaire ». Si les charges appliquées sur le cadre engendrent une « compression » du câble, celui-ci 
ne pouvant pas reprendre cet effort on observe une déformation de la structure. Celle-ci peut se 
déformer jusqu’à effondrement ou rester en état d’équilibre intermédiaire mais pour vérifier cela il 
convient d’effectuer ce que l’on appelle un calcul « non-linéaire » qui est itératif. 
Ainsi, l’exemple présenté est similaire à une nième étape du calcul itératif non-linéaire, la première 
étant un calcul avec un câble non déformé.  

 

 
Cela revient au même que de comprimer le câble depuis l’extérieur. La « non-linéarité » du câble va 
permettre des déformations très importantes. Nous pouvons d’ailleurs vérifier ce phénomène de la 
même manière que pour la question 1 ; le système devient en effet un mécanisme lorsque le câble est 
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« comprimé » (U – N = 5 – 6 = -1 !) et il est alors nécessaire que la structure soit appuyée sur deux 
appuis fixes pour être isostatique. 
 

d. Peut-on tout de même calculer les efforts dans la structure ? Si oui expliquer pourquoi et effectuer le 
calcul. 
Le système expliqué à la question précédente montre que celui-ci est isostatique car l’on remplace le 
câble par des forces appliquées connues sur le cadre. 

DIAGRAMME DES MOMENTS 

 

DIAGRAMME DES EFFORTS TRANCHANTS 

 

DIAGRAMME DES EFFORTS NORMAUX 

 

e. Que se passe-t-il si la déformation tend à être nulle au point d’application de la charge ? 
Si la déformation (flèche) tend à être nulle, ou si l’angle du câble tend à être nul, alors la force de 
traction dans le câble tend vers l’infini. La composante verticale de cette force tend alors vers zéro et 
la composante horizontale tend vers l’infini, ce qui est physiquement impossible. 
 

f. Quelles conclusions peut-on tirer de ces résultats ? 
Même avec une petite charge verticale appliquée au milieu d’un câble tendu entre deux points fixe, 
la tension engendrée dans le câble peut-être très grande ! Il convient donc de faire très attention à ce 
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genre de situation ou les efforts engendrés dans la structure peuvent être déterminants par la suite 
lors du dimensionnement. 
 
Note :  
- Dans cette situation, en réalité le système va s’adapter (et peut être se rompre) par 

l’augmentation de la flèche du câble. Il faut effectuer un calcul itératif non-linéaire 
- Cela explique pourquoi, souvent, ce genre de système contient des « suspentes » pour soutenir le 

câble ou tirant et retransmettre les charges verticalement et non horizontalement (cf. schéma). 

 


